Wetlands: champions of ecosystem services

Jos T.A. Verhoeven

Contents

- Ecosystem Functions and Ecosystem Services
- Why are wetlands champions?
- Current debates:
 - Provisioning services (debate: water provisioning)
 - Nutrient regulation: (debate: does nutrient retention have side effects?)
 - Climate regulation (debate: C storage vs. methane emissions)
- Multiple wetland services and livelihoods:
 - constructed wetlands Florida
 - Inner Niger delta

Definition of wetlands

- Areas with water level near soil surface (at least 6 months per year)
- Sediments with indications for anaerobic conditions (rusty brown and en black-grey mottling)
- Vegetation consists of plants with special adaptations: submerged life form or flood tolerance

Ramsar Convention for wetland protection and wise use

CONVENTION ON WETLANDS

CONVENTION SUR LES ZONES HUMIDES

CONVENCIÓN SOBRE LOS HUMEDALES

(Ramsar, Iran, 1971)

Wetlands of the world

Wetland types and hydrology

Ecosystem Services vs. Ecosystem Functions

- Ecosystem Services: benefits (goods and services) that people obtain from the functioning of ecosystems
- Ecosystem Functions: interactions between ecosystem structure and processes that underpin the capacity to provide goods and services
- Millennium Ecosystem Assessment (2005)

Wetland ecosystem services

• Provisioning:

- Biomass/ food production
- Enhancement of fisheries (riverine, coastal)
- Water?

Regulating:

- Flood detention and storm protection
- Nutrient/sediment retention: better water quality
- Carbon storage vs. GHG emissions (climate)

Cultural:

- Heritage and use by livelihoods
- Biodiversity, esthetics and ecotourism

Combinations?

Why are wetlands champions?

- Wetlands have water: abundant life!
- Many wetlands have a catchment → rich in nutrients
- Combination of water and nutrients → high productivity
- Fish and crustacean production! Waterfow!!
- Wetlands have water-logged soils → anaerobic conditions
- Slow decomposition and organic matter storage
- Complex biogeochemistry resulting in denitrification and methane emission

Provisioning and food chain support

Provisioning services: examples

 Spawning and nursery habitat for fish: saltmarsh & mangrove

 Reeds for thatching, paper or woodwind instruments

Waterfowl: ducks, geese

Are wetlands provisioning water?

- Confusion over the relation between wetlands and water
- "Wetlands have a water-provisioning function"
- In reality, wetlands lose water through evaporation or groundwater seepage
- Wetlands need much water
- Withdrawal of water from rivers is detrimental for wetlands
- Current paradigm in water resource management:
 "Blue" and "Green" water

The Blue and Green water catchment perspective

Need for 50% increased crop production in 2035 will create a world water crisis

- Agriculture and wetland ecosystems are dependent on water
- Irrigation is using Blue water for agriculture
- This Blue water is extracted from rivers at the expense of natural wetlands

Protecting wetlands' water needs

- 'Environmental flow' approach in river basins helps protecting the mere existence of wetlands
- Loss of wetland ecosystem services may outnumber short-term economic benefits
- Integrated water resources management needed

Irrigation or flooding? rice fields versus floodplains

Regulating services: biogeochemistry

Element cycles in wetlands

- Wetlands: surplus of water, shortage of oxygen in the soil
- Drastic consequences for biogeochemistry: anaerobic decay processes
- Electron acceptors other than oxygen: nitrate, iron, manganese, sulphate, carbon dioxide

Redox-couples show a sequence:

Oxidation-Reduction or Redox Potential — Millivolts (Corrected to pH 7)

Decomposition rate declines in anoxic conditions

Key wetland biogeochemical processes

- In anaerobic wetland soils:
 - Nitrate is denitrified towards N₂O and N₂[†]
 - Sulphate is reduced to sulfide
 - Methane is produced
 - Carbon is sequestered because of incomplete decomposition
 - \rightarrow Water quality enhancement (N₂O?)
 - \rightarrow Climate regulation (carbon? methane?; N₂O?)

Nutrient loading of wetlands

- Increase of primary productivity
- Shifts in species composition of algae, aquatic plants and fauna

Overloading -

- Loss of functional integrity, dramatic fish kills and nutrient flush
- Wetlands for nutrient retention:
- (1) Riparian zones; (2) Constructed wetlands

Nutrient flows in agricultural landscapes

Nitrate concentrations in riparian zones

Denitrification in upper 10 cm

Nitrous oxide emission

Sewage Treatment Plant plus Wetland

Water quality and hydraulic retention time

The Water Harmonica

- Water from sewage treatment plant was polished effectively:
- 99.9% removal of E. coli
- 25% additional N removal
- No additional P removal
- Particles in water changed from sewage sludge to freshwater biota (phytoplankton and zooplankton)

Multiple services: STP effluent polishing + Biodiversity

Residential area, South Florida

Breeding colonies of herons, egrets, anhinga's

Often visited by local residents......

.....And now part of the Florida Birding Trail

Wetland ecosystem services: some perspectives

- Wetlands do provide many services because they have (1) water (2) nutrients (3) anoxic soils
- Wetlands do NOT have a water-provisioning function; they compete for water with agriculture
- Wetlands (riparian, constructed) have a robust nitrogen retention function with little side effects
- As long as they are not loaded beyond critical limits
- Wetlands have a cooling effect on climate, if they are long-term carbon accumulators
- Multiple services are often important for livelihoods